
NASA Contractor Report 181987

ICASE INTERIM REPORT 9

A SCHEME FOR SUPPORTING DISTRIBUTED

DATA STRUCTURES ON MULTICOMPUTERS

Seema Hiranandani

Joel Saltz

Harry Berryman

Piyush Mehrotra

NASA Contract No. NAS 1-18605

January 1990

(NASA-CR-1.'3198/) A SCH_M_ FUR SU#PORTING

DTSTRI6UTED DATA STRUCTUR_FS ON

MULTICOMPUT=RS Find] Report (ICA._E) 14 p

CSCL 12A

Ng0-1BL52

Unclas

O261650

!

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

J

NASA Langley Research Center, Hampton, Virginia 2366-6-5

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

I.sngley Re,_rch C_nter
Hamplon, Virginia 23665-5225

7_

• r

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.

The series will complement the more familiar blue ICASE reports that have been

distributed for many years. The blue reports are intended as preprints of

research that has been submitted for publication in either refereed journals or

conference proceedings. In general, the green Interim Report will not be submit-

ted for publication, at least not in its printed form. It will be used for research

that has reached a certain level of maturity but needs additional refinement, for

technical reviews or position statements, for bibliographies, and for computer
software. The Interim Reports will receive the same distribution as the ICASE

Reports. They will be available upon request in the future, and they may be

referenced in other publications.

Robert G. Voigt
Director

A Scheme for Supporting Distributed Data Structures on

Multicomputers *

Seema Hiranandani Joel Saltz Harry Berryman

Piyush Mehrotra

Institute for Computer Applications in Science and Engineering,

NASA Langley Research Center,

Hampton VA 23065

Department of Computer Science

Yale University

New Haven, CT 06520

January 3, 1990

1 Abstract

We propose a data migration mechanism that allows an explicit and controlled mapping of data

to memory. While read or write copies of each data element can be assigned to any processor's

memory, longer term storage of each data element is assigned to a specific location in the memory

of a particular processor. Our proposed integration of a data migration scheme with a compiler

is able to eliminate the migration of unneeded data that can occur in multiprocessor paging or

caching. The overhead of adjudicating multiple concurrent writes to the same page or cache line

is also eliminated. We present data that suggests that the scheme we suggest may be a practical

method for e_ciently supporting data migration.

*This work was supported by the U.S. Office of Naval Research under Grant N00014-86-K-0310, and under

NASA contract NASl-18605 while the authors were in residence at ICASE, NASA Langley Research Center.

PRECEDING PAGE BLANK NOT FILI01ED iii

p_,GE._l NTENTiONAL4.¥ BLAN&

_:.,__ _._i. _ _ _.._: _"i_ _._;_ _:._._ ,._

2 Introduction

It is well known that data distribution and load balance play critical roles in determining the

performance one can expect to obtain from distributed machines. Data must be moved from

processor to processor in response to computational demands. One way of supporting data

migration is to explicitly designate blocks of data that are to be prefetched into the memory of

a given processor and to copy the data into customized data structures. Programs are written

on each processor with intimate knowledge of the format used to store off-processor data. For

some problems, this approach to data dlstributlon can be extremely efficient. Programming in

this manner can be very time consuming, and can lead to programs that are difficult to debug.

Mechanisms have been proposed to allow data to migrate in an automatic fashion. The

physical memory of a multiprocessor is viewed as a single logical memory. Data migrates to the

processors that refer to particular logical memory addresses. The following methods have been

proposed to support data migration [1], [4], [3], [5]

• Multiprocessor paging: A logically shared memory is divided into pages which are contigu-

ous, equal sized ranges. Processors store copies of required pages in their local memories.

A page table is used to find the page corresponding to a given address in logical memory.

J Multiprocessor Caching: Each processor stores copies of the contents of address ranges in

a logically shared memory. A subset of address bits are used to determine the location of

data in physical memory.

b

Before describing our methods, we will outline some of the well known shortcomings of each

of these data migration mechanisms. One of the principal difficulties with multiprocessor paging

is the problem of false sharing. In a given portion of code, most locations in logical memory

may not be accessed by multiple processors. Since pages consist of ranges of contiguous memory

locations, different portions of a given page may be accessed by different processors. At best,

false sharing will cause processors to waste physical memory to store data that will not be

used. False sharing has the potential for causing particularly severe performance degradation

if multiple processors attempt to concurrently write to different memory locations on a given

page. Decreasing page size will tend to reduce false sharing. However when page size is reduced,

page table storage requirements and communications latency overheads increase.

In multiprocessor caching, we may also see false sharing when a large cache line size is

chosen or alternately experience significant communications latency effects when small cache

lines are employed. Furthermore, since the cost of obtaining off-processor data may be very

high compared to the cost of fetching data from local memory or cache , we want to maintain

an extremely high hit ratio. It is well known that it is easy to find patterns of data access that

make very poor use of cache memory. It may not be possible to maintain an extremely high hit

ratio in a data cache.

Finally, in both caching and paging schemes, maintaining coherency in large scale multipro-

cessors may be associated with very high overheads.

-1-

2.1 Overview of Hashed Cache Data Migration Scheme

We support distributed data structures in a way that allows an explicit and controlled mapping

of data to memory. While read or write copies of each data element can be assigned to any

processor's memory, longer term storage of each data element is assigned to a spec!fic loca_!0n

in the memory of a particular processor. A processor needing t6read or Wri_e::an array element

gets a copy of that element. We constrain the form of programs so that only parallel loops or

sequential code can be specified. Each data element can be written to by at most one processor

during the course of a Single set of (nested) parallel loops. This constraint eliminates the need

for hardware coherency support. At the end of a set of nested parallel loops, all modified data

is copied back to its home location

A loop is transformed into two parts by a compiler. One part is called an inspector, the

other is called an ezecutor. The inspector is responsible for determining what data elements are

required by a loop, the executor carries out the actual computations.

In a distributed memory machine, execution time procedures carry out the actual fetching

of data. Local copies of data are stored in a hash table. Access to the table must be very

fast. Location the in_hasTn _able is determined by taking low order bits of a quantity that is

analogous to an address in logical memory. Unlike a traditional cache, we cannot afford to allow

data elements to be thrown away just because too many required addresses have the same low

order bits. We instead use a linked list when more than a single data element hashes to a given
location.

3 The Hashed Cache System

3.1 Support of Distributed Arrays

We support distributed multidimensional arrays in a way that allows an explicit and controlled

mapping of data to memory. AS stated above, long term storage of each data element is assigned

to a specific location in the memory of a particular processor. Users are able to specify the
following attributes in their distributed array initializations:

• The topology of the processor array on which the data arrays are to be embedded

• The dimensionality of the data arrays :

...... • Subset of pr0cesso-rs:used-tostorearray e]emenfs

• Mapping of array elements onto the specified processors

Once a distributed array is initialized, we can use the specified partitioning information to

find, for any distributecl array element, a unique processor P along wiCnaun]que location in that

processor P's storage. In each processor, contiguous memory locations are used to store local

elements of a given distributed array. The unique location in P's storage can thus be expressed

as an integer offset 0. Further details of our support for distributed arrays are beyond the scope

of this note but can be found in [2], [6].

-2-

_1 do iter=l, num

_2 do i=i,n**2

_3 do j=O, m

34 y[i] += values[i] [j]*yold[nbrs[i] [j]] ;

end do

end do

S5 do k=l,n**2

yold[k] = y[k];

end do

end do

Figure 1: Sparse Matrix Vector Multiply

3.2 Details of the Hashed Cache System

The program in Figure 1 will be used as a running example in this discussion. This program

performs a sequence of matrix vector multiplications. In order to compute y [i] at each iteration,

we need yold[nbrs [i] [j]]. Both y and yold are to be defined as distributed arrays. When

the loop is distributed, loop iterations may be assigned to processors in an arbitrary fashion.

Consequently long term storage of elements of y or yold may not be assigned to the processors

that execute code referring to those elements.

The global arrays are initialized at the start of the program. We proceed to describe the

primitives that support the inspector and ezecutor phases of the hashed-cache system. To best

understand the details of the inspector and executor phases we describe them in the context of

the example presented in Figure 1.

Firstly, there are 3 different kind of references to global arrays.

1. Local: The address of the reference corresponds to the local memory of the processor. The

reference may be a read or a write.

2. Non-Local Read: The address of the reference corresponds to the local memory of some

other processor. The element is only read.

3. Non-Local Write: The address of the reference corresponds to the local memory of some

other processor; the element is written to.

3.3 The Inspector Phase

Figure 2 depicts the psuedo-code of the inspector phase for the sparse matrix vector multiply.

During the inspector phase we go through the inner-loop once to check for local and non-local

-3-

global array accesses. If an array reference is local we do nothing. However, if it is a non-local

reference to a global array, we compute the processor on which the element resides and its offset.

We need to store this information in such a way that accessing it is efficient. This is achieved

by using a hashed cache scheme.

Initially, we allocate a certain amount of memory for a cache. We partition the cache into

blocks, one for each globally defined distributed array. Each block is treated as a separate hash

table. The location of a non-local distributed array element is determined by a hash function.

Currently , we use a hashing function that simply masks the lower k bits of the key where k

depends on the size of the hash table. The key is formed by concatenating the processor-offset

pair, (P, 0), that corresponds to a distributed array reference. Each entry in the hash table

consists of the following:

1. a reference to the non-local data item, i.e., the data item's processor-offset pair,

2. whether the item is to be read (read flag),

3. whether the item is to be written (write flag),

4. the data value itself.

If the data item is a non-local read reference R, it is processed by the process-global-read(}
routine. The routine is described as follows:

process-glo bal- read()

1. Search for the reference R in the hashed-cache.

2. If R exists and the read flag is set, do nothing.

3. If R exists and the read flag is not set, set read flag.

4. If R is not found the in hashed cache, create an entry with read flag set and enter it in the
hashed-cache.

5. In the latter two situations, increment a count variable that contains the number of non-

local elements to be gathered from the processor P on which this element resides. The

offset of this element is written to a list containing the offsets of all the elements to be

gathered from P.

Non-local array references R that are written to, are processed by the process-global-write 0
routine described below:

process-global-write 0

1. Search for the reference R in the hashed-cache.

-4-

Loop over local iterations i assigned to P

do j = O,m

Compute processor, offset pair for element of yold

If yold reference is to non-local array element,

process-global-read()

end do

End loop over local iterations

Loop over local iterations k assigned to P

If yold reference is to non-local array element,

process-global-write()

End loop over local iterations

Figure 2: Inspector: Sparse Matrix Vector Multiply

2. If R exists and the write flag is set, do nothing.

3. If R exists and the write flag is not set, set write flag.

4. If I_ is not found in hashed cache, create an entry with write flag set and enter it in the

hashed-cache.

5. In the latter two situations increment a count variable containing the number of non-local

dements to be scattered to P. The offset of R is written to a list containing the offsets of

all the elements to be scattered to P.

At the completion of the inspector phase we precompute the communication pattern required

to efficiently gather or scatter all relevant non-loca/data referenced in the loop. This requires a

global communication phase in which all processors participate. For a detailed description, see

[6], [2].

-5-

3.4 The Executor Phase

Figure 3 depicts the pseudo-code of the ezecutor phase for the sparse matrix vector multiply.

The non-local data required by the inner loop is first obtained from other processors and

stored in the hashed-cache by the process-gather-data routine. We now proceed to execute the

doall loop.

During the execution of the inner-loop we check each distributed array reference to decide

whether it resides in the local array or not. I£ it does, we compute the otTset of the element in

the local array and fetch the data item from the appropriate memory location. If it does not, we

fetch it from the hashed cache. If the array reference occurs on the left hand and it is non-local,

we enter the new value in the hashed cache. At the end of the execution of the inner-loop, each

processor calls the process-scatter-data 0 routine. This routine goes through the list of non-local

offsets of elements to be scattered, searches for these elements in the hashed cache and writes

the value to a list containing the new values to be written to the distributed memory. The data

is then scattered to the distributed memory.

The operations for computing processor number and offset are computationally very cheap

since we assume the distributed array may be partitioned in a block or block wrap fashion. The

size of each block is a power of 2 and thus we need to perform simple integer operations such as

shifts to compute the offset and processor number of a distributed array element.

4 Experimental Results

The program depicted in Figure 1 exhibits greatly varying patterns of locality depending on how

loop iterations are assigned to processors and depending on the contents of the integer array

nbrs. Integer nbrs can be viewed as a representation of a sparse matrix. We used a synthetic

workload to generate a number of sparse matrices with differing dependency patterns. A square

mesh in which each point was linked to four nearest neighbors was incrementally distorted.

P_andom edges were introduced subject to the constraint that in the new mesh, each point still

required information from four other mesh points.

Our workload generator makes the following assumptions:

1. The problem domain consists of a 2-dimensional mesh of points which are numbered using

their natural ordering_

2. Each point is initially connected to its four nearest neighbors

3. Each link produced in the above step is examined, with probability Pr the link is replaced

by a link to a randomly chosen point.:

Once generated, this connectivity information is stored in integer array nbrs.

To obtainan experimentalestimateof the efficiencyofthe executoron the InteliPSC/2, we

carriedout a sequenceofsparsematrix-vectormultiplicationsusinga 128'128 matrix generated

from a square mesh using the workload generator described above.

E

-6-

do iter=l, hum

process-gather-data() - obtain needed yold values from

other processors,

put in hashed cache

Loop over local iterations k assigned to P

do j = O,m

Perform calculation reading yold values or

writing y values using local memory or

hashed cache as is appropriate.

end do

End loop over local iterations

Loop over local iterations k assigned to P

Perform assignment reading y values or

writing yold values using local memory or

hashed cache as is appropriate.

End loop over local iterations

process-scatter-data() - scatter yold values from

hashed cache to appropriate

processors

end do

Figure 3: Executor: Sparse Matrix Vector Multiply

-7-

We define

• p = Total Number of Processors

• BlockSize = (128 x 128)/p

• ArraySize = 128 x 128

We partitioned yold in the following ways:

1. partition the array in contiguous blocks of size BlockSize, i.e. processor i is assigned indices

ix BlockSize through (i + 1)x BlockSize -1

2. partition the indices in an interleaved fashion i.e. processor i is assigned indices i, iq-p, i+

2p,... ,i+ (BlockSize- 1) ×p.

We first present the results obtained by partitioning yold in contiguous blocks. Table 1

depicts the time required to carry out the inspeCtor:ah_executor loops along with the optimal

time. We define the optimal time as the sequential time divided by the number of processors.

The inspector took a time roughly equal that required by one or two optimally parallelized

iterations. Since the inner loops of most scientific codes consist of many repetitions of loops

with invarlant dependency patterns, this inspector overhead is not expected to be a serious

performance bottleneck in many programs of practical interest.

We define parallel efficiency as Twrau_J(T,_,,ti_t * P) where T_,_ti_ is the time taken by

a sequential program to run on a single processor, P is the number of processors and Tp_rauet is

the time required to run the parallelized program on P processors. The parallel efficiencies were

0.76, 0.73, 0.67 and 0.56 for problems run on 4, 8, 16 and 32 processors respectively. We obtained

relatively high efficiencies because most of the required data resided in the local memory of the

processor. We also ran the sparse matrix vector multiply on 32 processors with probabilities Pr

equal to 0.2 and 0A that an edge is rand0mty dlsplaced. As we increased Pr, we encountered

more non-local references. Efficiencies dropped from 0.56 to 0.30 when the probability was 0.2

and to 0.21 when the probability was 0.4.

We next present results obtained using an interleaved partition of yold. When an interleaved

partition is employed, most of the data required by each processor is non-local. We need to

fetch large amounts of data from the hashed Cache:: Moreover, there are also non-local write

data accesses to yold. Thus we have to write the new values to the distributed memory, The

parallel efficiencies obtained using an interleaved partition of yold are depicted in Table 2. As

we increased the probability Pr, the number of edges displaced randomly increases. Due to the

nature of the array partitioning, it is likely that the main effect of of increaseing Pr is to increase

the number of processors from which data needs to be fetched. We see a decrease in efficiency

as we increase the probability of randomly displacing an edge.

Single processor timings of an optimized version were compared with the parallel code run

on one processor. The sequential code required T_eq_,_,_t_az= 64.4 milliseconds and the one pro-

cessor parallel code required Tp_u_z = 81.4 milliseconds. The overhead due to the executor

_=

Table 1: Matrix-Vector Multiply - Blocked Partitioning
Processors

4

8

16

32

Inspector
time

(ms)
11.8

7.3

4.8

4.3

Exec u tor
time

(ms)
21.3
11.1

6.0

3.6

Optimal
time

(ms)
16.1
8.05

4.03

2.01

Table 2: Matrix-Vector Multi
Processors Pr- 0.0-I

r

4

16

32

efficiency

0.36

0.23

0.19

ly - Interleaved Partitioning
Pr = 0.2 Pr - 0.4

efficiency efficiency
0.29 0.25

0.18 0.17

0.11 0.10

is approximately 26 percent. We expect substantially lower overheads on RISC based multi-

processors both because of the high prevalence of shift operations in hashed cache calculations

and because of the potential for being able to concurrently schedule executor floating point and

integer operations.

5 Conclusion

We propose a data migration mechanism that allows an explicit and controlled mapping of data

to memory. While read or write copies of each data element can be assigned to any processor's

memory, longer term storage of each data element is assigned to a specific location in the memory

of a particular processor. Our proposed integration of a data migration scheme with a compiler

is able to eliminate the migration of unneeded data that can occur in multiprocessor paging or

caching. The overhead of adjudicating multiple concurrent writes to the same page or cache line

is also eliminated. We present data that suggests that the scheme we suggest may be a practical

method for efficiently supporting data migration.

References

[1] Mark Holliday. Page table management in local/remote architectures. Report CS-1988-2,

Duke, 1988.

[2] C. Koelbel and P. Mehrotra. Supporting shared data structures on distributed memory ar-
chitectures. Technical Report CSD-TI_ 915, Purdue University, West Lafayette, IN, October

1989.

-9-

[3] Kai Li. A shared virtual memory system for parallel computing. In Proceedings of the 1988

International Conference on Parallel Processing, Penn State, University Park, Penn, August
1988.

[4] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. In Proceedings

of the Fifth Annual ACM Symposium on Distributed Computing, Calgary Alberta Canada,

August 1986.

[5] Janak H. Patel. Analysis of multiprocessors with private cache memories. IEEE Transactions

on Computers, 31-4:296-304, 1982.

[6] J. Saltz, Kathleen Crowley, l_avi Mirchandaney, and Harry Berryman. t_un-time schedul-

ing and execution of loops on message passing machines, to appear in journal parallel and

distributed computing, april 1990. P_eport 89-7, ICASE, January 1989.

-10-

Report Documentation Page

1. Report No,

NASA CR- 181987

ICASE Interim Report 9

2. Government Accession No.

4. Title and Subtitle

A SCHEME FOR SUPPORTING DISTRIBUTED DATA STRUCTURES ON

MULTICOMPUTERS

7. Author(s)

Seema Hiranandani

Joel Saltz

Harry Berryman

9, Pedorming Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Repo_ Date

January 1990

6. Performing Organization Code

8. Performing Organization Repo_ No.

ICASE Interim Report 9

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementa_ Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report

Submitted to 17th Annual Sym-

posium on Computer Architecture

16, Abstract

We propose a data migration mechanism that allows an explicit and controlled

mapping of data to memory. While read or write copies of each data element can be

assigned to any processor's memory, longer term storage of each data element is

assigned to a specific location in the memory of a particular processor. Our pro-

posed integration of a data migration scheme with a compiler is able to eliminate

the migration of unneeded data that can occur in multiprocessor paging or caching.

The overhead of adjudicating multiple concurrent writes to the same page or cache

line is also eliminated. We present data that suggests that the scheme we suggest

may be a practical method for efficiently supporting data migration.

17. Ke¥ Words(SuggestedbyAuthor(s))

Data Migration, cache t paging, inspector,

executer

18, Distribution Statement

59 - Mathematical and Computer

Sciences (General)

Unclassified - Unlimited

19. SecuriW Cla_if. (of this repot)

Unclassified

NASA FORM 1626 OCT 86

[20. SecuriW Cla_if. (of this pa_)

Unclassified

21. No. of pages 22. Price

14 A0 3

